Canonical Correlation
Analysis

Bruce Thompson

anonical correlation analysis (CCA) is an analytic method that can
Cbe used to investigate relationships among two or more variable
sets. Each variable set usually consists of at least two variables (otherwise
the canonical analysis is typically called something else, such as a ¢ test
or a regression analysis). Although in theory the canonical logic can be
generalized to more than two variable sets (Horst, 1961), in practice
most researchers use CCA in situations involving only two variable
sets.

Canonical analysis was originally conceptualized by Hotelling
(1935). Notwithstanding its long history, as Krus, Reynolds, and Krus
(1976) noted, “‘dormant for nearly half a century, Hotelling’s (1935)
canonical variate analysis has come of age. The principal reason behind
its resurrection was its computerization and inclusion in major statistical
packages’ (p. 725). Of course, having sophisticated statistical packages
available does not in and of itself justify the use of CCA or any other
analysis.

For two reasons, however, multivariate methods are being used with
increasing frequency. First, multivariate methods control the inflation
of experimentwise (Type I) error rates (Ctexperimennwise)  that can occur
when several univariate tests are conducted with a single sample’s data,
even when the testwise error rate (Q..) is very small. Thompson
. (1994d) provided further explanation of what experimentwise error is
. and how this error rate can be estimated.

3 Second, multivariate methods, such as CCA, best honor the nature
. of the reality that most researchers' want to study because many of us
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believe that we live in a reality where most effects have multiple causes
and most causes have multiple effects. As Tatsuoka (1973) emphasized,
the often-heard argument, “I'm more interested in seeing how each
variable, in its own right, affects the outcome” overlooks the fact
that any variable taken in isolation may affect the criterion differ-
ently from the way it will act in the company of other variables. It
also overlooks the fact that multivariate analysis—precisely by con-
sidering all the variables simultaneously—can throw light on how
each one contributes to the relation. (p. 273)

That is, univariate and multivariate analyses of the same data can yield
results that differ like night and day with regard to both statistical sig-
nificance and effect sizes (R?, eta’, etc.), and the multivariate picture in
such cases is the accurate portrayal. Fish (1988) provided an empirical
example of how univariate and multivariate analyses of the same data
can yield contradictory results.

Thompson’s (1999a) example was even more dramatic. For his
data, two univariate analyses of variance yielded statistically nonsignifi-
cant results (both p values were .774) with eta® variance-accounted-for
effect sizes of both 0.5%. For the same data analyzed by multivariate
analysis of variance (MANOVA), pcuaws Was .000239, and the multivar-
iate eta® was 62.5%.

This second reason for the more frequent use of multivariate meth-
ods is the more noteworthy of the two. Some researchers avoid inflated
experimentwise error rates by making so-called Bonferroni corrections
(i.e., downward adjustments in Qeywie SO as to moderate increases in
Qexperimenwwise) » DUL this second reason still applies even when such adjust-
ments are invoked. Furthermore, this second reason for using multi-
variate analyses is more noteworthy because the first reason involves
statistical significance testing, and social scientists have been placing less
emphasis on statistical significance testing (cf. Cohen, 1994; Thompson,
1996; Thompson & Snyder, 1997, 1998). Indeed, the APA Task Force
on Statistical Inference has issued a report that greatly emphasizes the
importance of focusing interpretations on effect sizes, particularly in

. relation to the previous effects found in related prior studies (Wilkinson
& APA Task Force on Statistical Inference, 1999).

It is also important to emphasize that although some researchers
incorrectly believe that they can appropriately first conduct multivariate
tests and then conduct so-called “protected” univariate tests (Maxwell,
1992, pp. 138--140), again the second rationale for conducting multi-
variate analyses still exists (Thompson, 1994d). That is, univariate tests
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cannot reasonably be used to investigate and understand the patterns
first isolated in multivariate analyses; only a multivariate analysis can
explore a multivariate effect. .

Thus, for these two reasons, CCA has been used in a variety of
published research. Wood and Erskine (1976) and Thompson (1989)
provided extensive bibliographies of applications of CCA. Example ap-
plications include those reported by Chastain and Joe (1987); Dunst
and Trivette (1988); Estabrook (1984); Fowler and Macciocchi (1986);
Fuqua, Seaworth, and Newman (1987); Pitts and Thompson (1984);
and Zakaahi and Duran (1982). One particularly interesting application
involves studies of multivariate test—retest score reliability or of multi-
variate criterion-related score validity (cf. Sexton, McLean, Boyd,
Thompson, & McCormick, 1988).

The purpose of this chapter is to provide a primer on CCA. A
longer and more technical treatment is provided by Thompson (1984).
The chapter (a) explains the basic logic of CCA using a heuristic data
set, (b) provides a brief explanation of how CCA is related to other
commonly used univariate and multivariate parametric analyses, (c) il-
lustrates the steps in interpreting canonical results, and (d) details some
common errors to avoid in interpreting canonical analyses.

Basic Logic of Canonical Calculations

Problems With the Nonmultivariate Alternative

Imagine that the director of personnel for a national chain of depart-
ment stores wishes to determine the relationship between characteristics
of sales staff and indices of job performance, using a random selection
of salespeople from various stores. The first set of variables is obtained
from personnel files and is comprised of scores on three questionnaires:
leadership potential, need for achievement, and empathy; and of scores
on a fourth variable, years of previous sales experience. Call this variable
set “employee attributes.” A conceptually discrete second set of varia-
bles, called “‘job performance,” might be comprised of scores on three
measures: past year’s sales, absenteeism, and numbers of suggestions
previously submitted for improving store operations. How can the di-
rector of personnel make sense of these data?

The investigator could first separately examine the intradomain ma-
trix of bivariate correlations between the variables in each set. For ex-
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only the employee attributes variables could
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If the variable sets cannot each be appropriately considered purely
unidimensional, however, then computing this simple sum of scores is
akin to adding apples and oranges. In addition, regardless of the di-
mensionality of each variable set, a simple sum of scores does not reflect
the possibility that some variables are more important and thus need
to be weighted more strongly than others when exploring relationships
between the two variable sets. Also such a simple summation weighting
system would not intentionally maximize the relationship between the
variable sets. CCA is the method of choice in such situations.

In this example, CCA would determine the exact weighting scheme
for computing one or more employee scores and for computing one
or more performance scores. The specific combination of weights is
called a canonical function (conceptually, a function consists of weights
[multiplicative constants] similar to the beta [8] weights that constitute
a regression equation), and the score obtained by applying the canon-
ical function coefficients to a set of actual measured scores for a given
person is known as a synthetic score. CCA determines weighting schemes
that create synthetic—latent scores that are maximally correlated. That
is, no other possible combination of weighting schemes can be devised
that would ultimately lead to a higher correlation between the resulting
two synthetic—latent variables on a given CCA function.

Heuristic Data Set

An actual data set is used to make this discussion concrete with regard
to the basic logic of CCA. The illustration uses scores on five measured—
observed variables (i.e., two in one set and three in the other set) from
301 cases from the Holzinger and Swineford (1939, pp. 81-91) data.
These scores on ability batteries have classically been used as examples
in both popular textbooks (Gorsuch, 1983, passim) and computer pro-
gram manuals (Joreskog & Sorbom, 1989, pp. 97-104) and thus are
familiar to many readers.

The illustrative data involve five variables, each of which is inter-
vally scaled. Other levels of scale can be used in canonical analyses,
however, if data are still somewhat normally distributed (e.g., Cooley &
Lohnes, 1976, p- 209). As Maxwell (1961) noted, “the theory of canon-
ical variate analysis, widely used with continuous variables, can be em-
Ployed when the variables are dichotomous” (p. 271; for more technical
detail, see Thompson, 1984, pp. 16-18).

One set of measured variables involves scores on three measures
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of “perceptual abilities”: visual perception (VP), lozenges flipped
shapes (LFS), and counting groups of dots (CGD). The second, con-
ceptually discrete set of variables measured ‘“academic achievement”:
word meaning (WM) and mixed math fundamentals (MMF). The syn.
tax commands to conduct the canonical analysis of these variables
within the popular SPSS programs, including the Windows versions, are
a bit tricky because within SPSS, CCA is run within the MANOVA pro-
cedure. The commands for this example are

MANOVA VP LFS CGD WITH WM MMF/

PRINT = SIGNIF(MULTIV EIGEN DIMENR)/

DISCRIM = STAN CORR ALPHA (.999)/
Table 9.1 presents the matrix of Pearson product—-moment correlation
coefficients for these data. For example, the interdomain bivariate cor-
relation between VP (a member of the first variable set) and MMF (a
member of the second variable set) is .2826. The correlation matrix is
*“symmetric”’ about the diagonal. The diagonal contains all Is, reflecting
the correlation of each measured—observed variable with itself. The cor-
relation between VP and MMF in the first row and last column is re-
produced exactly as the correlation between MMF and VP in the first
column and last row.

Of course, one could subject the Table 9.1 correlation matrix to a

Table 9.1

Bivariate Correlation Matrix
Variable
Variable VP LFS CGD WM MMF
VP 1.0000 0.4407 0.2239 0.3568 0.2826
LFS 0.4407 1.0000 0.1860 0.1977 0.1668
R11 R12
CGD 0.2239 0.1860 1.000 0.1496 0.3111
WM 0.3568 0.1977 0.1496 1.000 0.4401
R21 R22
MMF 0.2826 0.1668 0.3111 0.4401 1.0000

Note. VP = visual perception; LFS = lozenges flip
of dots; WM = word meaning; MMF = mixed ma

shapes; CGD = counting groups
fundamentals. The quadront names

are designated in bold; R11, for example, is an intradomain quadrant in that bol
subscripts are the same.
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factor analysis to evaluate relationships among the variables. If the mea-
sured variables consist of theoretically discrete variable sets, however, or
if the variables were measured at chronologically discrete times, such a
factor analysis would not honor the view that the measured variables
exist within meaningful sets.

Indeed, it is only when the researcher believes the measured-
observed variables exist within meaningful variable sets that CCA would
be an appropriate analysis. In the present example, the conceptualiza-
tion of the two variable sets as being discrete seems reasonable. Of
course, such classifications are matters of researcher judgment, and
even reasonable researchers differ regarding such judgments (just as
researchers may reasonably disagree about most aspects of the research
endeavor).

CCA computer programs first partition the correlation matrix into
quadrants associated with the variable sets, as illustrated in Table 9.1.
Note that each quadrant is identified by a boldface R with two sub-
scripts. R11 includes the intradomain correlations between variables
that are measures of perceptual abilities (variable set 1), and R22 in-
cludes correlations between variables that are measures of academic
achievement (variable set 2). Both R12 and R21 include the interdo-
main correlations between variables from across the two variable sets.

After the correlation matrix is computed, a quadruple-product ma-
trix is then computed from the four quadrants, using the following
matrix algebra formula:

R225% R215.5 R1155, R12,,0, = Agys.

This matrix, As,,, is then subjected to a principal components analysis,
and the results are expressed as standardized weights (Thompson, 1984,
pp- 11-14 provides more detail) called standardized canonical function
coefficients.

Although further discussion of the mathematical underpinnings of
CCA is beyond the scope of this chapter, note that these function co-
efficients are directly akin to beta () weights in regression or the pat-
tern coefficients from exploratory factor analysis. As noted shortly, these
function coefficients are one important element within the process of
result interpretation.

It may occur to the reader that many statistical analyses invoke
weights but that different names are used for the same concepts across
techniques (e.g., beta weights vs. pattern coefficients vs. function coef-
ficients and equation vs. factor vs. function). Sometimes it appears that
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the sole purpose of such misnomers is to confuse graduate students

into thinking that these analyses are unrelated to each other rather than V

all being part of one general linear model (GLM; Fan, 1996, 1997,
Knapp, 1978; Thompson, 1991b).

Table 9.2 presents the standardized function coefficients for the
current example. The number of functions (sets of weights) in a CCA

is always equal to the number of variables in the smaller of the two
variable sets (i.e., in this example, two). In Table 9.2, the first canonical

function is labeled Function I and the second is labeled Function II. Ag .
is always the case, these functions are perfectly uncorrelated with each

other and so are the scores on the latent or synthetic variables com

puted by applying the weights to the observed or measured variables
(i.e., here five measured variables). Thus, synthetic-latent variables are :
never directly measured. Synthetic variables are obtained by applying !
weights to the measured variables. The synthetic variables are estimates :

of the latent constructs of interest and are the actual focus of all statis-
tical analyses.

Computing synthetic variable scores is actually a simple matter. For

example, for the variable set consisting of three variables, the scores of
the first person in the data set were VP, 20; LFS, 3; and CGD, 115. For
the second variable set, this person’s scores were WM, 9, and MMF, 24,
To compute the synthetic variables, raw scores must first be transformed

to z scores (i.e., scores having a mean of 0 and a standard deviation of _

1). The zscore equivalents of the first person’s five scores were —1.373
—1.658, +.220, —.821, and —.056, respectively.

For the first participant, based on the first canonical function, two '

synthetic scores are computed. The first synthetic score, PREDI, is for
the perceptual abilities variable set. The second synthetic score, CRIT1,
is for the cognitive academic achievement variable set. In principal com-
ponents analysis, this would be analogous to computing factor scores
on Factor I; however, because in CCA there are two variable sets, one
distinguishes synthetic variables by using two names, namely, PREDI
and CRIT1. If two canonical functions were present, then synthetic var-
iables on the second factor would be labeled PRED2 and CRIT2.

For the first participant, the synthetic PRED]1 score can be obtained

by applying the standardized function coefficients to the z scores for
the measured variables. For example, the synthetic score for first par-

ticipant equals the z score for VP (—1.373) multiplied by the standard-

ized function coefficient (0.733), plus the z score for LFS (—1.658)

multiplied by the standardized function coefficient for LFS (0.091), plus *
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the 2z score for CGD (0.220) multiplied by the standardized function
coefficient for CGD (0.473). The result of the computation for the first
participant yields PRED1 = —1.053.

Similarly, the synthetic-latent variable score CRIT1 for the first
participant would be computed as the z score on WM (~0.821) multi-
plied by the standardized function coefficient for WM (0.548), plus the
z score for MMF (—0.056) multiplied by the standardized function co-
efficient for MMF (0.621). The result of this computation yields CRIT1
= —0.485. Note that all these synthetic scores are themselves in zscore
form. That is, PRED1, PRED2, CRIT1, and CRIT2 are all z scores, with
a mean of 0 and a standard deviation of 1.

Figure 9.1 presents a scatterplot of the 301 scores on PRED1 and
CRIT1. For variables in zscore form, the bestfitting regression line has
a slope, B, that is equal to the correlation of the two synthetic variables
(+.4246). This bivariate product-moment correlation coefficient is
nothing more or less than the multivariate canonical correlation be-
tween the weighted variables in the two variable sets, Rc. Remember,
no other possible weighting scheme can produce two synthetic variables
that have a higher correlation between them: CCA maximizes Rc.

In Table 9.3, note that PRED and CRIT synthetic scores are un-
correlated with each other except when they are from the same func-
tion. As shown, PRED1 and CRIT1 are correlated with each other (the
first Rc) and so are PRED2 and CRIT2 (the second Rc), but the re-
maining correlations among these different synthetic scores are all zero.
This establishes that all the synthetic variable scores, except PRED1 with
CRIT1 and PRED?2 with CRIT?2, are ‘‘bi-orthogonal.” Note that the last
row of Table 9.3 presents the bivariate product—moment correlation
coefficients involving the four synthetic variables and, for illustrative
purposes, one arbitrarily selected observed or measured variable, WM.
This facilitates the understanding of a second coefficient (in addition
to the standardized function coefficient), called a structure coefficient,
which is important in all multivariate analyses and in univariate analysis
(Thompson, 1997; Thompson & Borrello, 1985).

A structure coefficient (indicated as r, in Table 9.2) is the bivariate
product-moment correlation between scores on an observed or mea-
sured variable and scores on a synthetic or latent variable for that mea-
sured variable’s variable set. Thus, because structure coefficients are
correlation coefficients, they range from —1 to +1, inclusively; stan-
dardized function coefficients, however, are not usually correlation co-
efficients and have no definitive boundaries (see Thompson, 1984,

Figure 9.1
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Table 9.3

Product-Moment Correlation Coefficients Among the Four Synthetic
Variables Scores and One Measured Variable
Variable

Variable CRIT1 CRIT2 PRED1 PRED2 WM

CRIT1 1.0000

CRIT2 0.0000 1.0000

PRED1 0.4246° 0.0000 1.0000

PRED?2 0.0000 0.1863°  0.0000 1.0000

WM 0.8253 —0.5647¢  0.3504° -0.1052° 1.0000

Note. WM = word meaning. °RC, as reported in Table 9.2. *Rey, as reported in Table
9.2, “The siructure coefficient for measured variable WM on Function 1, as reported in
Table 9.2. 9The structure coefficient for measured variable WM on Function I, as re-
ported in Table 9.2. *The index coefficients for measured variable WM (see Thompson,
1984, pp. 30-31}.

pp- 21-24). The use of function and structure coefficients are further
explained when rubrics for result interpretation are presented.

Table 9.2 also presents other indices that (unlike function and
structure coefficients, which are almost always essential to interpret) are
at least in some instances important in evaluating and interpreting CCA
results. The special circumstances when the following two coefficients
are important are detailed in the subsequent section on interpreting
results. A common error by less-experienced CCA researchers involves
interpreting the following two coefficients when they are in fact irrele-
vant and do not to be interpreted.

A canonical adequacy coefficient indicates how adequately a given
function, on average, reproduces the variance of a given set of measured
variables. For example, consider the first canonical function and the
academic achievement variable set. For WM, the structure coefficient is
r, = .825. Here, the squared structure coefficient is r’ = .6806. This
means that 68.06% of the observed WM variable is useful within this
canonical function. Also here, the mean of the squared structure co-
efficients ([.6806 + .7569]/2 = .7188) is the canonical adequacy coef-
ficient for the first function. Thus, on average, this canonical function
reproduces approximately 72% of the variance of the WM and MMF
variables. The largest this number can be is 100%, indicating that all
the variance of the measured variables in the given set has been repro-
duced within the function and the associated synthetic variable.
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Table 9.2 also presents a redundancy coefficient (Rd) for each canon-
ical function and variable set (i.e., four Rds, two for each function). Rd
is defined as the product of the canonical adequacy coefficient for a
variable set multiplied by the squared canonical correlation, Rc® (for
further discussion, see Thompson, 1991b). For example, for the aca-
demic achievement variable set, the redundancy coefficient for the first
canonical function is Rd = .7188 X .1800, or Rd = .1294.

Finally, Table 9.2 also presents canonical communality coefficients (h®),
which unlike the previous two coefficients are often important to eval-
uate when interpreting results. Canonical commonality coefficients are
equal to the sum of the squared structure coefficients for a given vari-
able across the canonical functions. For example, for VP, h?* = .7726
(i.e., 17 for Function I) + .2134 (i.e., r? for Function II) = 0.9861. This
indicates that the two synthetic variables, considered together, can re-
produce 98.61% of the variance of the VP variable, or conversely, that
98.61% of this measured variable was useful in defining the function.

Note that h® was greater than 98% for all measured variables in
the example, except for LFS, for which h® was less than 30%. This sug-
gests that compared with the other measured variables, the synthetic
variables obtained in this CCA had relatively less to do with scores on
the LFS variable. Sometimes measured variables with anomalously low
communality coefficients may be deleted from the analysis to obtain a
more parsimonious solution (see Thompson, 1984, pp. 47-51).

Canonical Correlation Analysis in the General Linear Model

CCA is the most general case of the parametric general linear model
(Baggaley, 1981; Fan, 1996; Fornell, 1978; Thompson, 1991b), unless
one wishes to delineate an even broader general linear model that also
directly takes into account measurement error (Bagozzi, Fornell, &
Larcker, 1981; Fan, 1997; Thompson, 1999b). Knapp (1978) demon-
strated these views in some mathematical detail and concluded that
“virtually all of the commonly encountered tests of significance can be
treated as special cases of canonical correlation analysis™ (p. 410). Thus,
Knapp's work was cited in a compilation of the seminal methodology
publications produced during the past several decades (Thompson &
Daniel, 1996).

Saying that CCA constitutes the parametric general linear model,
subsuming all other parametric univariate and multivariate analyses,
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means that the other analyses are special cases of canonical analysis,
and that the other analyses (e.g., ¢ tests, analysis of variance [ANOVA],
regression, MANOVA, descriptive discriminant analysis) can actually be
conducted using the logic of CCA (Campbell & Taylor, 1996). This re-
alization is of immense heuristic value for people trying to understand
how various analytic methods are related to each other.

Three Redlizations

Three important realizations can be extracted from the view of CCA as
the general linear model. First, the GLM view forces researchers to un-
derstand that all analyses are correlational. Some designs are experi-
mental, but all analyses are correlational, and it is the design (not the
analysis) that enables the making of causal inferences.

Too many researchers use OVA methods (ANOVA, ANCOVA [anal-
ysis of covariance], MANOVA, and MANCOVA [multivariate analysis of
covariance]) because they have come to associate making causal infer-
ences with OVA methods; these erroneous associations are all the more
pernicious because the associations tend to be made unconsciously. As
Humphreys (1978) emphasized,

the basic fact is that a measure of individual differences is not an

independent variable, and it does not become one by categorizing

the scores and treating the categories as if they defined a variable

under experimental control in a factorially designed analysis of

variance. (p. 873)

Similarly, Humphreys and Fleishman (1974) noted that categorizing var-
iables in 2 nonexperimental design using an ANOVA or other OVA
analysis “not infrequently produces in both the investigator and his
audience the illusion that he has experimental control over the inde-
pendent variable. Nothing could be more wrong™ (p. 468).

So the use of OVA methods to analyze nonexperimental data can
be unnecessary and is usually harmful if researchers discard variance
on intervally scaled predictor variables, so that they can use OVA meth-
ods (Thompson, 1994c). As Cliff (1987) explained,

such divisions are not infallible; think of the persons near the bor-

ders. Some who should be highs are actually classified as lows, and

vice versa. In addition, the “barely highs” are classified the same as

the “very highs,” even though they are different. Therefore, reduc-

ing a reliable variable to a dichotomy makes the variable more un-

reliable, not less. (p. 130)

Second, the GLM view of canonical analysis correctly indicates that
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all parametric analyses either explicitly or implicitly invoke systems of
weights applied to measured variables to produce synthetic variables.
Again, these weight systems are often arbitrarily (and confusingly) given
different names across different analyses (e.g., beta weights vs. pat-
tern coefficients vs. function coefficients and equation vs. factor vs.
function).

The fact that these weights are used to define synthetic-latent
variables correctly suggests that it is the synthetic variables that are ac-
tually the focus in all analyses. That the synthetic variables are the
analytic focus can be seen in the realization that the Rc equals the
product-moment r between the synthetic variables for a given canon-
ical function.

Third, the fact that all analyses are correlational implies that effect
sizes ought to be reported and interpreted in all research studies. No
knowledgeable researcher reporting bivariate or multiple correlation
coefficients fails to comment on the magnitude of the squared corre-
lation coefficients. Because all analyses are correlational, all researchers
reporting ¢ test, ANOVA, descriptive discriminant analysis, or any other
analysis should always interpret uncorrected (e.g., eta’) or corrected
(e.g., omega®) effect sizes or some other measures of effect size (Snyder
& Lawson, 1993). The necessity of reporting such effect sizes is rein-
forced by the 1994 Publication Manual of the American Psychological Asso-
dation, which notes that “neither of the two types of probability values
reflects the importance or magnitude of an effect because both depend
on sample size. ... You are encouraged to provide effectsize informa-
tion” (p. 18, emphasis added).

Unhappily, 11 empirical studies, each of either one or two volumes
of 23 different journals, demonstrate that this “encouragement” has
been ineffective (Vacha-Haase, Nilsson, Reetz, Lance, & Thompson,
2000). Thompson (1999c) observed that only encouraging effect-size
reporting “‘presents a self-canceling mixed message. To present an ‘en-
couragement’ in the context of strict absolute standards regarding the
esoterics of author note placement, pagination, and margins is to send
the message, ‘these myriad requirements count, this encouragement
doesn’t’” (p. 162). Given (a) a rationale as to why an encouragement
is doomed to continued impotence and (b) empirical evidence that the
encouragement indeed has been ineffective, editors of several journals
have now come to require effect-size reporting (cf. Heldref Foundation,
1997; Murphy, 1997; Thompson, 1994a).

In fact, the recent report of the APA Task Force on Statistical In-
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ference emphasized, “ always provide some effectsize estimate when re-
porting a pvalue” (Wilkinson & APA Task Force on Statistical Inference,
1999, p. 599, emphasis added). Later the task force wrote that research-
ers should
always present effect sizes for primary outcomes. . .. It helps to add
brief comments that place these effect sizes in a practical and the-
oretical context. ... We must stress again that reporting and inter-
preting effect sizes in the context of previously reported effects is
essential to good research. (p. 599, emphasis added)

A Demonstration of the General Linear Model Concept

An illustration is provided to clarify how CCA subsumes other para-
metric analyses as special cases. The reader can consult other resources
(e.g., Fan, 1996; Thompson, 1991b) for more comprehensive demon-
strations of these various linkages, including SPSS or SAS syntax pro-
grams that conduct the related analytic proofs. Space precludes a com-
plete treatment here, except for the following illustration. Specifically,
the fact that CCA subsumes regression as a special case is demonstrated.
This relationship is relatively straightforward because both analyses are
explicitly correlational.

Figure 9.2 presents the SPSS for Windows regression printout for
an analysis in which WM was treated as the dependent variable, whereas
scores on VP, LFS, and CGD were used as predictor variables. Figure
9.3 presents the printout from the same analysis conducted using the
logic of CCA.

The correlation coefficients from the analysis are the same (mul
tiple R = +.36586 and Rc = +.366), except that the computer pro-
grammers arbitrarily elected to report results to different numbers of
decimal places. However, the standardized weights (i.e.,, B and func-
tional coefficients) from the two analyses seem to be different.

Actually, the weights are merely scaled differently, and such differ-
ences are not meaningful. Table 9.4 demonstrates how B weights can
readily be converted into standardized canonical function coefficients
and vice versa. Other resources show how CCA subsumes and can there-
fore be used to perform ¢ tests, ANOVA, ANCOVA, MANOVA, and

descriptive discriminant analyses (cf. Thompson, 1991b). In short, all_

analyses (a) are correlational, (b) invoke weights being applied to mea-
sured variables to estimate synthetic variables, and (c) yield variance-
accounted-for effect sizes analogous to r°.
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Figure 9.2
Equation Number 1 Dependent Variable.. T9 WORD MEANING TEST
Block Number 1. Method: Enter Tl T4 T12
Variable(s) Entered on Step Number

1.. Ti2 SPEEDED COUNTING OF DOTS IN SHAPE

2.. T4 LOZENGES FROM THORNDIKE--SHAPES FLIPPED

3.. T1 VISUAL PERCEPTION TEST FROM SPEARMAN VPT
Multiple R .36586
R Square .13385
Adjusted R Square .12511
Standard Error 7.17347
Analysis of Variance

DF Sum of Squares Mean Square

Regression 3 2361.87366 787.29122
Residual 297 15283.21604 51.45864
F = 15.29950 Signif F = .0000

Variables in the Equation -------—mee——ceae-—

Variable B SE B Beta T Sig T
Tl .353005 .066737 .322413 5.289 .0000
T4 .036160 .051249 .042660 .706 .4810
T12 .026311 .021088 .069479 1.248 .2131
{Constant) 1.285475 2.632565 .488 .6257

Abridged SPSS printout showing regression results.

Interpreting Canonical Results

Because all classical parametric analyses are special cases of CCA, the
same interpretation strategy can be used for any parametric analyses.
The interpretation is approached as a hierarchical, two-stage contin-
gency model. Not to put the matter too technically, two questions are
addressed: '

1. Do I have anything?
2. Where does what I have originate?

One reaches the second question only if the answer to the first question
is yes.

In addressing these two questions, the interpretation should be
framed within the context of sample size. CCA is a large-sample method,
potentially requiring 15—20 participants per measured variable (cf. Bar-
cikowski & Stevens, 1975). When one is interpreting the results, more
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Table 9.4
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c
?ﬁ_ Regression and Canonical Results
£ Coefficients
[}
! ! g Variable B / Re = Function x R
: o oe | v VP 322413/ 366 = .881 X .36586
SR T 5 LFS 042660 /366 = 117 X .36586
L : ‘; CGD 069479 /366 = 190 X 36586
W =3
: : Eé‘ Note. VP = Visual percepfion; LFS = lozenges flipped shapes; CGD = counting groups
] of dots. The beta {8} and R coefficients came from the Figure 9.2 regression as regres-
! oo '8 ° sion results. The Re and function coefficients came from the Figure 9.3 regression as
! oo 14 ﬁ' canonical results.
I (8] . | o -
a 3
: § : ‘E g confidence can be vested in result stability as sample size is larger. Fur-
1 3 1B 3 thermore, interpretations must be framed in the knowledge that para-
1 o ! E § doxically one can typically be more confident in the stability of the
! v 8 '% -,CQ_J ¢ overall effect size than in conclusions regarding the specific origins of
: a g : E o the effect (cf. Thompson, 1990, 1991a).
g S 58
: 2 5 L8 _gg 1. Do | Have Anything?
: E s 8 : § ;‘: '§ A researcher can select any combination of three sorts of evidence to
- A - o § address the question, “Do I have anything?” First, the researcher can
1 b g 14 o interpret the statistical significance of the canonical correlation coeffi-
1 8 o ;4; _E g cients. Of course, because the calculated probability (p) for a given set
'3 '9 ~.§ 7 of results is highly dependent on sample size, consideration of statistical
'S o ow A ‘B_g significance provides limited information. Furthermore, notwithstand-
: é % 2 : E 2 " §E§ .§ o ing common misconceptions to the contrary, statistical significance tests
'8 2 ' 55§ te §¢8: do not evaluate whether the sample results occur in the population or
Tg & 1 53 ?S are likely to be replicated in future samples (cf. Cohen, 1994; Thomp-
- |':§ _g—g son, 1996; Snyder & Thompson, 1998; Thompson & Snyder, 1997,
- 1o &5 1998).
! g e ! 73 ] -ZT:) Second, the researcher can interpret some measure of effect size
: E 2 : E .’é _*E ‘s (see Kirk, 1996). There are many choices, as partiallyv enumerated by
, 8 8 , & 7 o E. § Snyder and Lawson (1993). In the canonical case, the squared canonical
a2 o g ag8e el correlation coefficients can be interpreted, or so-called *adjusted” val-
“ —‘83 ues of these coefficients (similar to the adjusted R® in multple re-
; Tg’g gression) can be interpreted (Thompson, 1990). The interpretation
> 58 of effect sizes invokes the researcher’s subjective judgment of the
[T < U . . . . .
noteworthiness of results. This intimidates some researchers, who be-
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come afraid that they will say or write judgments with which others will
disagree.

Some such researchers seek an atavistic escape from these fears by
trying to use statistical significance tests as an objective standard for
whether results are noteworthy. As Thompson (1993) explained, how-
ever, “if the computer package did not ask you your values prior to its
analysis, it could not have considered your value system in calculating
p's, and so p’s cannot be blithely used to infer the value of research
results” (p. 365). Clearly, research is in part an inherently subjective
business, and researchers must inescapably make the necessary judg-
ments.

There are no clear boundaries regarding what effect sizes are note-
worthy. The judgment is made at the nexus of the researcher’s value
system and the substantive focus of the research. For example, the var-
iance-accounted-for effect size associated with the effects of smoking on
longevity is reportedly about 2% (cf. Gage, 1978, p. 21). This is a small
number, but most people take any definitive decrease in their potential
days on earth seriously and thus deem the effect noteworthy. Others,
of course, may feel that the pleasures of smoking outweigh the possible
costs, especially because most effects occur “on the average” (i.e., the
relation between smoking and longevity does not apply equally to each
individual who smokes).

Third, researchers can evaluate whether their effects are replicable.
If science is about the business of identifying relationships that recur
under specified conditions, so that knowledge is cumulated, then the
replicability issue is a critical one. Because statistical significance tests
do not evaluate result replicability (cf. Thompson, 1996; Snyder &
Thompson, 1998; Thompson & Snyder, 1997, 1998), two classes of meth-
ods can be invoked to evaluate this important issue.

Ultimately, the best way to evaluate result replicability is to replicat.e
a given study. This represents a so-called “external” replicability analysis
because a completely new sample is drawn. For pragmatic reasons, how-
ever, most researchers feel unable to replicate all their studies (e.g.,
tenure or promotion or meritraise decisions are approaching, one’s
spouse has threatened to abandon the doctoral student if the disserta-
tion is not completed by date certain). In such cases, researchers can
instead invoke so-called “internal” replicability analyses to try to eval-
uate replicability. These internal analyses are not as accurate as true
replication efforts but are certainly better than no attempt to evaluate
result replicability.
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There are three basic logics for such empirical internal replicability
analyses: (a) cross-validation, (b) the jackknife, and (c) the bootstrap.
As Thompson (1996) explained, “basically, the methods combine the
subjects in hand in different ways to determine whether results are sta-
ble across sample variations, i.e., across the idiosyncrasies of individuals
which make generalization in social science so challenging” (p. 29). An
expanded discussion of these three methods is beyond the scope of this
treatment. Thompson (1994b) provided an overview. Crossman (1996)
described canonical crossvalidation. Thompson (1995) described a
computer program, CANSTRAP, that implements a bootstrap CCA.

2. Where Does What | Have Originate?

Given that a decision has been made that the canonical results are
noteworthy, the question then arises, “Where does what I have origi-
nate?” Many canonical coefficients can be interpreted to address this
question (Thompson, 1984), but the two coefficients of primary impor-
tance are the standardized canonical function coefficients and the struc-
ture coefficients. Both must be interpreted (for a contrary view, see
Harris, 1989).

Variables with function coefficients of zero on a given function
clearly have no effect on defining the synthetic variables associated with
the function. That is, multiplying the scores on an observed variable
by the multiplicative constant of zero statistically kills that observed
variable.

But it is critical to remember that a given observed variable can
get a function coefficient of zero for either of two reasons: (a) The
measured variable has nothing to contribute with regard to the rela-
tionship between the variable sets; or (b) whatever the measured vari-
able has to contribute with regard to the relationship between the var-
iable sets (which may even be quite a lot), one or more other variables
also contain this variance or information and the given measured vari-
able is arbitrarily denied any credit for providing this information. Ob-
viously, the same thing can occur in regression, but certainly no reason-
able researcher believes that in regression measured variables with
weights of zero are inherently useless (Thompson & Borrello, 1985).

So measured variables with near-zero function coefficients may or
may not be useless in creating the detected effects, and this ambiguity
can only be resolved by consulting structure coefficients. As Meredith
(1964) suggested, *if the variables within each set are moderately in-
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tercorrelated the possibility of interpreting the canonical variates by
inspection of the appropriate regression weights [function coefficients]
is practically nil” (p. 55). Similarly, Kerlinger and Pedhazur (1973) ar-
gued that, “a canonical correlation analysis also yields weights, which,
theoretically at least, are interpreted as regression 3 weights. These
weights {function coefficients] appear to be the weak link in the ca-
nonical correlation analysis chain” (p. 344). Levine (1977) was even

more emphatic:

I specifically say that one has to do this [interpret structure coeffi-
cients] since I firmly believe as long as one wants information about
the nature of the canonical correlation relationship, not merely the
computation of the [synthetic function] scores, one must have the
structure matrix. (p. 20, emphasis in original)

One can determine that a measured variable is arbitrarily being
denied credit for providing predictive information on a given function
when the variable has a near-zero function coefficient but has a struc-
ture coefficient that is large in absolute value (i.e., approaching —1 or
+1). For example, Sexton et al. (1988) presented a canonical analysis
in which one variable had a function coefficient of +.02 on Function I
but a structure coefficient of +.89.

Measured variables can also have nearzero structure coef-
ficients but function coefficients that are large in absolute magni-
tude. Such results indicate the presence of socalled “suppression” ef-
fects explained in most regression textbooks. Horst (1966) provided the
classic example. An accessible explanation is presented by Lancaster
(1999).

Only measured—-observed variables that have function and struc-
ture coefficients that are both near zero contribute nothing to defining
a given function and its associated effects. Only measured variables with
all function coefficients near zero and canonical communality coeffi-
cients near zero contribute nothing to the canonical solution as a whole.

A hybrid case, however, in which only one set of coefficients could
be correctly interpreted should be noted (Thompson, 1984, pp. 22-
23). The function and structure coefficient matrices for a given variable
set are identical when the measured variables in the set are perfectly
uncorrelated, as would be the case, for example, if the variables in a
set consisted of factor scores on orthogonally rotated principal com-
ponents.
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A Brief lllustrative Interpretation

The Table 9.2 results can be interpreted to provide a model of the
recommended interpretive procedure. First, the noteworthiness of de-
tected effects is evaluated. Here, the squared canonical correlation co-
efficients (Rc®) are 18.00% and 3.50%. One can presume that the re-
searcher deemed only the first canonical function noteworthy, given
personal values and the substantive context of the study.

Although it is important to judge which, if any, of the Rc? values
(and the associated canonical functions) are deemed noteworthy to be
retained for interpretation, a thorough researcher also assesses whether
a similar outcome would result were the analysis repeated with an in-
dependent random sample. There are various ways to accomplish this
(see Crossman, 1996; and Thompson, 1990, 1995). In reading applica-
tions of CCA in journals, look for whether the researcher has attempted
to estimate replicability.

In the present context, for example, presume that the researcher
first evaluated the replicability of the detected effect initially by applying
the commonly used Ezekiel (1930) regression R? correction formula to
compute an adjusted Rc? (Thompson, 1990) for Function I and consid-
ered the “shrunken” Rc? still noteworthy. Next, presume the researcher
conducted either a canonical cross-validation (Crossman, 1996) or a
canonical bootstrap analysis (Thompson, 1995) and empirically deter-
mined from this “internal” replicability analysis that the detected effect
was reasonably stable across variations in the sample.

At this juncture, the researcher addresses the issue of where the
effects originate. All five measured variables have function and structure
coefficients on Function I that are all positive, as reported in Table 9.2.
Thus, all the observed variables are positively related with the under-
lying synthetic variables on this function.

On the one hand, the LFS variable has a function coefficient of
+.091. This variable has a structure coefficient of +.502 on the func-
tion, however, and this indicates that the other observed variables on
this function are arbitrarily getting credit for the predictive power that
LFS brings to the table.

On the other hand, LFS has a disproportionately low squared struc-
ture coefficient (25.20%) as against the remaining coefficients on this
function, which range from 42.77% to 77.26%. Thus, the overarching
pattern is that higher scores on the two perceptual tasks, VP and CGD,
are predictive of higher scores on both achievement measures, WM and
MMF scores.
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These results can also be viewed from another intriguing perspec-
tive. Note that both the WM and MMF variables have function and
structure coefficients that are both positive on Function I. The WM and
MMF variables have function and structure coefficients with opposite
signs on Function II. Function I can therefore be viewed as explaining
aspects of positive covariation between the two measured achievement
variables, which is most noteworthy (Rc® = 18.00%). In contrast, Func-
tion 11 evaluates aspects of differences between the two achievement
variables, although here such differences are not very noteworthy (Rc*
= 3.50%). This contrast illustrates the richness of canonical analysis,
which, in this example, can be used to explore prediction of both the
commonalities among and the differences between given measured
variables.

Two Analytic Pitfalls to Avoid

For researchers interested in conducting CCA and for readers who must
interpret the work of others who use this method, two potential analytic
pitfalls can lead to erroneous conclusions and should be avoided. First,
there is the problem of incorrect interpretation of the statistical tests
performed in CCA. Most statistical packages that perform CCA produce
multiple functions and multiple test statistics, but only the last test sta-
tistic is a test of the effect size associated with a single function.

For example, imagine a hypothetical problem in which there are
three canonical correlations. In this instance, most programs provide
three sets of test statistics, and this may lead one to believe that each
test statistic can be used to evaluate each correlation coefficient inde-
pendent of the others; however, this is not true. In this case, the first
test statistic is used to evaluate all three canonical correlations (and
their squared values as well); the second test statistic is appropriate for
evaluating the second and third coefficients as a set; and only the third
test statistic is a test of a single correlation coefficient, that is, the third
and final canonical correlation. Most computer programs do not test
each single canonical correlation, except the last one, and conducting
tests of individual canonical correlations, other than the last one, is not
a straightforward matter (see Stevens, 1992, pp. 411-412).

In the context of the illustrative problem, for example, that in-
volved the two Rc® values reported in Table 9.2, most computer pro-
grams would report two test statistics (not shown in Table 9.2). For this

CaNONICAL CORRELATION ANALYSIS ® 309

example, the computer output reported an F statistic of 12.25 (degrees
of freedom [df] = 6,592, p < .001) for *“roots 1 to 2" and an F of 5.34
(df = 2,297, p < .005) for “roots 2 to 2.” Only the last test is an appro-
priate test of a single canonical correlation (Rc = .1863, Rc® = 3.50%).

Second, researchers should generally avoid interpreting canonical
redundancy coefficients (Rd; see Table 9.2). Stewart and Love (1968)
conceptualized these statistics, and Miller (1975) developed a partial
test distribution to test the statistical significance of redundancy coeffi-
cients.

Although Cooley and Lohnes (1971, p. 170) suggested that redun-
dancy coefficients have great value, more recent thinking suggests that
the interpretation of redundancy coefficients does not make much
sense in a conventional canonical analysis. As Cramer and Nicewander
(1979) clearly established, redundancy coefficients are not truly multi-
variate (see also Thompson, 1988). This is important to note because
univariate results are generally not useful in interpreting multivariate
effects.

Furthermore, canonical analyses optimize Rc (not Rd); it seems
contradictory to emphasize statistics not optimized in a given analysis.
If one were interested in redundancy coefficients, then a redundancy
analysis should be performed rather than a CCA (see Thompson, 1984).

Indeed, a redundancy coefficient can only equal one when (a) the
synthetic variables for the function represent all the variance of every
variable in the set (i.e., all squared structure coefficients are one), and
(b) the squared Rc also equals one. Such an outcome would be rare.
In short, redundancy coefficients are useful only to test outcomes that
rarely occur and that may even be unexpected (Thompson, 1984). Nev-
ertheless, there can be exceptions to this rule, such as perhaps in multi-
variate test—retest reliability or multivariate concurrent validity studies,
where one might expect redundancy coefficients to approach one. Sex-
ton et al. (1988) reported just such an exception.

Conclusion

CCA can be a useful analytic tool, as noted previously, but interpreting
canonical results may challenge even seasoned analysts. As Thompson
(1980) noted,

[one] reason why the technique is [too] rarely used involves the
difficulties which can be encountered in trying to interpret canon-
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ical results.... The neophyte student of [CCA] may be over-
whelmed by the myriad coefficients which the procedure produces.
... [But CCA] produces results which can be theoretically rich, and
if properly implemented the procedure can adequately capture
some of the complex dynamics involved in educational reality. (pp.
1, 16-17)

Such difficulties can be mitigated by following the admonitions sug-
gested in this chapter. As with most analytic methods, real understand-
ing is best facilitated by practice in the context of actual analytic prob-
lems of intrinsic interest to a given researcher.

Suggestions for Further Reading

A good starting point for further reading would be Thompson (1991b),
followed by Crossman (1996). Stevens (1992; or other editions of his
book) provided more comprehensive treatments of canonical analyses.
Next, the comprehensive and more technical treatment in Thompson
(1984) would be useful. With regard to statistical testing in this and in
other contexts, Cohen (1994), Kirk (1996), and Thompson (1996) are
all strongly recommended.

Glossary

CANONICAL CORRELATION COEFFICIENT (Rc) The Pearson product—
moment correlation between the two sets of synthetic variable scores
computed for a given canonical function.

COMMUANLITY COEFFICIENT (h?) The proportion or percentage of var-
iance in a measured variable that is useful in defining the canonical
solution; conversely, the proportion or percentage of variance in a
measured variable that the CCA solution can reproduce.

EFFECT S1zE  The measures of magnitudes of effect or relationship that
can and should be calculated in all studies, which generally fall into
two major classes: (a) variance-accounted-for effect sizes analogous to
r* (e.g., Rc?) and (b) standardized mean differences (see Kirk, 1996;
Snyder & Lawson, 1993).

EXPERIMENTWISE ERROR RATE (Qexperimenmise) ~ 1he probability of making
one or more Type 1 errors in a set of hypothesis tests conducted in
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a single study, ranging from a minimum of (Qumisc) to a Maximum
of1 — (1 — Qaoise) ', where k is the number of hypotheses tested (see
Thompson, 1994d).

EXTERNAL REPLICABILITY ANALYSIS An analysis evaluating result rep-
licability in which new data are collected to determine the degree to
which (a) the same effect sizes occur and (b) the effects originate
with the same measured variables.

FuncTION The set (in some analyses called “equation” or “factor”)
of weights (e.g., regression B weights, factor pattern coefficients, ca-
nonical function coefficients) applied to the measured variables to yield
scores on synthetic variables (e.g., regression predicted Y scores, fac-
tor scores, canonical or discriminant function scores).

FuNCTION COEFFICIENT The multiplicative constant or weight applied
to a given measured variable as part of the calculation of scores on
synthetic variables; the weights are standardized if the measured varia-
bles to which they are applied are in zscore form.

GENERAL LINEAR MODEL (GLM) The concept that CCA subsumes all
classical parametric methods (from ¢ tests through MANOVA and de-
scriptive discriminant analysis) as special cases and that therefore all
analyses (a) are correlational, (b) invoke weights being applied to mea-
sured variables to estimate synthetic variables, and (c) yield variance-
accounted-for effect sizes analogous to 7 (see Knapp, 1978; Thomp-
son, 1991b).

INTERDOMAIN CORRELATION The bivariate correlation between scores
on two variables, both of which are members of two different con-
ceptually discrete variable sets.

INTERNAL REPLICABILITY ANALYSIS An analysis (e.g., cross-validation,
jackknife, or bootstrap) attempting to evaluate result replicability us-
ing the data in hand, without a true replication, thus resulting in a
somewhat positively biased estimate of replicability (see Thompson,
1993, 1994b, 1995).

INTRADOMAIN CORRELATION The bivariate correlation between scores
on two variables, both of which are members of a single conceptually
discrete variable set.

MEASURED—OBSERVED VARIABLE A variable for which scores are de-
rived by direct measurement by the researcher, as opposed to by ap-
plying weights to other variables.
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ReEDUDANGY COEFFICIENT (Rd) A canonical coefficient in a squared
metric that is not multivariate and that is useful in CCA only in un-
usual cases in which a “g” (general) function with a perfect effect
size (Rc® = 100%) is expected.

STRUCTURE COEFFIGIENT (%) The Pearson product-moment correla-
tion, which should be reported and interpreted in all CCA analyses,
between the scores on a given measured variable and the synthetic var-
iable scores on a given function for the variable set to which the mea-

sured variable belongs.

SYNTHETIC-LATENT VARIABLE Estimates of latent constructs, and the
actual focus of all statistical analyses, computed by applying weights to
the measured variables (e.g., regression predicted Y scores, factor
scores, discriminant or canonical function sCores).

TESTWISE ERROR RATE (Qswie) The probability of making a Type I
error in the test of a single hypothesis.

WEIGHT The multiplicative constants (e.g., regression B weights, factor
pattern coefficients, canonical function coefficients) applied to the mea-
sured variables to yield scores on synthetic variables (¢.g., regression pre-
dicted Y scores, factor scores, discriminant or canonical function

scores).
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onsider the following designs:

Example 1. Cognitive Psychology. A psychologist was interested in
how people’s abilities to recognize stimuli are impaired when
their attention is diverted. Each research participant indicated as
soon as he or she identified a word flashed quickly on a com-
puter screen; the experimenter measured the time between the
presentation of the word and the participant’s reaction. For each
participant, this was conducted under three conditions. In the
“full attention” condition, the participant performed the word
identification task in silence. In the “distraction” condition, the
participant performed the task while an audio recording of a
man reading a story was played. In the “divided attention” con-
dition, the participants performed the task while listening to an-

other story. This time, however, the participants were required

to count the number of times the reader used the word but. For
each participant, the experimenter calculated the mean reaction
time for each of the three conditions.

Example 2. Clinical Psychology. A researcher wanted to examine the
efficacy of cognitive-behavioral therapy (CBT) compared with
treatment as usual for patients with major depression who come
to primary care clinics. Patients screening positive for depression
were randomized to either the CBT or control group. A baseline
assessment of depression was made using the Beck Depression

I am grateful to Paul Yarnold and Jean Lennon Weinfurt for their helpful comments on
an earlier draft of this chapter.
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